Relationship between dissociation and [protein]_{tot}

Take as a simple example: $H_2 = 2H$ (dimer-monomer equilibrium)

- Take as an estimate of the K_d value of the dimeric H structure (H₂) a value of about 10⁻⁶ M.
- You can calculate the concentration of H subunits [H] at different [protein]_{tot}, by the equation for the K_d value:
 - $K_d = [H]^2/[H_2]$ from the reaction for the dissociation: $H_2 \stackrel{\scriptscriptstyle a}{\scriptscriptstyle =} 2H$
 - Therefore, $[H]^2 = K_d \cdot [H_2]$
 - But, to get [H] in one equation with one unknown, you can use the relationship: $[protein]_{tot} = [H] + [H_2];$ or $[H_2] = [protein]_{tot} [H]$
 - Therefore, $[H]^2 = K_d \cdot ([protein]_{tot} [H]))$
 - And, [H]² = K_d•[protein]_{tot} K_d•[H];
 [H]² + K_d•[H] = K_d•[protein]_{tot}
 [H]² + K_d•[H] K_d•[protein]_{tot} = 0, which is a quadratic equation* where a=1, b= K_d, and c=-K_d•[protein]_{tot}
 - Therefore, $[H] = (-K_d \pm ((K_d)^2 4 \cdot 1 \cdot K_d \cdot [protein]_{tot})^{0.5})/2 \cdot 1$
- At a concentration of 1 mM ([protein]_{tot}), [H] = $(10^{-6} \pm ((10^{-6})^2 (4 10^{-6} \cdot 10^{-3}))^{0.5})/2$, or 3.1x10⁻⁵ M, and [H₂] = 0.001 0.000031 M = 0.00097 M. Ratio of 31:1 (H₂:H)
- At a concentration of 1 μ M ([protein]_{tot}), [H] = (10⁻⁶ ± ((10⁻⁶)²-(4•-10⁻⁶•10⁻⁶))^{0.5})/2, or [H] = 6.2 ×10⁻⁷ M, and [H₂] = 1×10⁻⁶ 6.2×10⁻⁷ = 3.8×10⁻⁷ M. Ratio of 0.6:1 (H₂:H)

Therefore, as you go from 1 mM and dilute 1000x to 1 μ M TOTAL [protein], the amount of dimer goes from 31-fold excess of the monomer to less that 1:1 (0.6:1).

*The quadratic equation: For $ax^2 + bx + c = 0$

 $x = (-b \pm (b^2 - 4ac)^{0.5})/2a$