Relationship between dissociation and $[p r o t e i n]_{\text {tot }}$

Take as a simple example: $\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{H}$ (dimer-monomer equilibrium)

- Take as an estimate of the K_{d} value of the dimeric H structure $\left(\mathrm{H}_{2}\right)$ a value of about $10^{-6} \mathrm{M}$.
- You can calculate the concentration of H subunits $[\mathrm{H}]$ at different [protein] $]_{\text {tot }}$, by the equation for the K_{d} value:
- $K_{d}=[H]^{2} /\left[\mathrm{H}_{2}\right]$ from the reaction for the dissociation: $\mathrm{H}_{2} \geqslant 2 \mathrm{H}$
- Therefore, $[\mathrm{H}]^{2}=K_{\mathrm{d}} \cdot\left[\mathrm{H}_{2}\right]$
- But, to get $[\mathrm{H}]$ in one equation with one unknown, you can use the relationship: $[\text { protein }]_{\text {tot }}=[\mathrm{H}]+\left[\mathrm{H}_{2}\right]$; or $\left[\mathrm{H}_{2}\right]=$ [protein] $]_{\text {tot }}-[\mathrm{H}]$
- Therefore, $\left.[\mathrm{H}]^{2}=K_{\mathrm{d}} \cdot\left([\text { protein }]_{\text {tot }}-[\mathrm{H}]\right)\right)$
- And, $[\mathrm{H}]^{2}=K_{\mathrm{d}} \cdot[\text { protein }]_{\text {tot }}-K_{\mathrm{d}} \cdot[\mathrm{H}]$;
$[\mathrm{H}]^{2}+K_{\mathrm{d}} \cdot[\mathrm{H}]=K_{\mathrm{d}} \cdot[\text { protein }]_{\text {tot }}$
$[\mathrm{H}]^{2}+K_{\mathrm{d}} \cdot[\mathrm{H}]-K_{\mathrm{d}} \cdot[\text { protein }]_{\text {tot }}=0$, which is a quadratic equation* where $\mathrm{a}=1, \mathrm{~b}=K_{\mathrm{d}}$, and $\mathrm{c}=-K_{\mathrm{d}} \cdot[\text { protein }]_{\text {tot }}$
- Therefore, $[\mathrm{H}]=\left(-K_{\mathrm{d}} \pm\left(\left(K_{\mathrm{d}}\right)^{2}-4 \cdot 1 \cdot-K_{\mathrm{d}} \cdot[\text { protein }]_{\text {tot }}\right)^{0.5}\right) / 2 \cdot 1$
- At a concentration of $1 \mathrm{mM}\left([\text { protein }]_{\text {tot }}\right),[\mathrm{H}]=\left(10^{-6} \pm\left(\left(10^{-6}\right)^{2}-\left(4 \cdot-10^{-6} \cdot 10^{-3}\right)\right)^{0.5}\right) / 2$, or $3.1 \times 10^{-5} \mathrm{M}$, and $\left[\mathrm{H}_{2}\right]=0.001-0.000031 \mathrm{M}=0.00097 \mathrm{M}$. Ratio of $31: 1\left(\mathrm{H}_{2}: \mathrm{H}\right)$
- At a concentration of $1 \mu \mathrm{M}\left([\text { protein }]_{\text {tot }}\right),[\mathrm{H}]=\left(10^{-6} \pm\left(\left(10^{-6}\right)^{2}-\left(4 \cdot-10^{-6} \cdot 10^{-6}\right)\right)^{0.5}\right) / 2$, or $[\mathrm{H}]=6.2 \times 10^{-7} \mathrm{M}$, and $\left[\mathrm{H}_{2}\right]=1 \times 10^{-6}-6.2 \times 10^{-7}=3.8 \times 10^{-7} \mathrm{M}$. Ratio of $0.6: 1\left(\mathrm{H}_{2}: \mathrm{H}\right)$

Therefore, as you go from 1 mM and dilute 1000x to $1 \mu \mathrm{M}$ TOTAL [protein], the amount of dimer goes from 31 -fold excess of the monomer to less that 1:1 (0.6:1).
*The quadratic equation:
For $a x^{2}+b x+c=0$
$x=\left(-b \pm\left(b^{2}-4 a c\right)^{0.5}\right) / 2 a$

